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1. INTRODUCTION

In an earlijer publicntionl we provided substantial evidence that
according to the predictions of magnetohydrodynamics (MHD), any realistic
field-reversed configuration (FRC) equilibrium should be very unsiable to
internal tilting. For the parameters of the Los Alamos FRX-B experiment the
e—folding time of the instability is about 1 usl. However, FRX-B shows no
signs of tilting during the 20 us quiescent phase of the experiments that
precedes the onset of the n=2 rotational instability. Thus evidently there is
a major disagreement between the experiments and the predictions of MHD
regarding the tilting instability. In this work we present numerical results
of the {finite Larmor radius (FLR) treatment of the tilting mode as described
by Seyler and Barnzs2. We have two principal results. First, the FLR theory
of tilting has singularities at the magnetic axis that make application of the
theory unphysical. Secund, numericel results will be presented showing that
for current experiments the magnetic moments of the ions are poorly conserved
at the tips of the flux surfaces in an FRC, and therefore there is a priori
reason to view an FLR theory as suspect for global modes in FRCs.

1. MHD RESULTS FOR TILTING

Reference 1 contains a stebility study of realistic FRC equilibria. The
conclusion of that work is that MHD profile effects cannot account for the
observed stability of the experiments, since all equilibria investigatcd were
roughly equally unstable to tilting. We assume that three properties of the
MHD eigenfunction hold approximately in our FLR calculation: that the
displacement in the r-z plane is axial (highly elongated FRC); that the axial
displacement is rigid, ¢,=¢ (v) (elliptical-like equilibria); and, that
¢,(y=n)=0 , where y=0 is the separatrix (internal mode).

111. FLR THEORY OF TILTING

In this secction we present the dispersion functional appropriste to the
Vliasov-{luid model as derived by Seyler and Barnes. The Vliasov-fluid model
ussumes that the ions are described by a Vlasov equation, and that the
electrons are treated as e cold, massless_fluid. Since MHD and the
Vlasov-fluid model have the same mergiral point“'™, we would not calculate
complete kinetic stabilization if all terns were evaluated exactly. However,
in an FLR theory, where particle resonauces are neglected, it is possible to
obtain complete stabilization?.

In the Vlasov-fluid model the scalar and vector pntentials are
represented in terms of a displacement vector ¥ as R ixB and ¢, = {.£. The
dispersion functiona) A(f {) 1is _gbtained by -ulttplylng the equations of
motion of the Viasov-fluid model by § + and integrating over all space. The
rglult from Seyler and Rarnes is

& = —26W - oF + 202K - R(w) = 0. (1)

In the last equation éW is the incoapressible ideal MHD éW, F is the FLR term,
K is the kinetic energy normalization term, and R(w) is the resonant particle
term. R(w) 1is neglected in an FLR theory, where tmp, /e<<) and d=a/b<<1,
where a and b are the minor and major radii, respectively, of the FRC, and Py
is the ion Larmor radius at the wall. °

It can be shown that the terms X and F of Seyler and Barnes are
incomplete in that R(w) contains terms that are of the same order as those
retained in K and F. The addition of the new terms leads to a new dispersion
functional
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by = ~28W - WFy + 207K, + O(:%6.¢362) = 0. (2)
From Eq. (74) of Seyler and Barnes, the term F is of the form
0 d¢
F=2nf ap(bi==12 + byle,12), (3)
Yy dy
where bg(V) is of the form -
bo(¥) = P(y) § :.‘-’f; Ba(s.¥). (4)

We have followed Seyler and Barnes by replacing the local gyrofrequency ! by a
non!scal frequency, nn, vhich {(ransfers smoothly from (! to the betatron
frequency as one approaches the field null. It is easy to show that the new
FLR term nmerely leads to a modification of B> in Eq. (4):

. - vV.B
Ba(s.9) * Bp(s.9) - nBZ [T (¥) + — - 3¢ /1. (s)

As can be seen from (5) the new terms of F, arise from a particular flux
surface average of the single particle drift frequency, and these new terms
are important numnerically compared to the terms in F.

When the dispersion functional A, was used in the eigenvalue code of
reference 1, it was discovered numerically and then wunderstood analytically
that the FLR terms were becoming infinite at the magnetic axis. Recall that
Seyler and Barues avoided one sinqularity by replacing 0 by the nonlocal

frequency nn in Eqs. (4-5). . owever, there still remain divergences in F,.
As ¥ * ¥y the flu: surfaces become (highly elongated) ellipses, and it is
possible” to derive analytical forms for the curvatures ¥, and «,. It is then

possible to show that {erms such as the last term in the square brarckets of
(5) diverge as ¥y = y_ . Th: effect of this is that near the field null the FLR
term completely domiﬁaten the unstable 6W term in the dispersion functional,
and “FLR stabilization” of the tilting mode is achieved. Obviously this is
not a physical result. One might argue that it would be more realistic to cut
off the divergences in F, at some cut-off value of y near y_, ¥.: this would
stil] allow the FLR termsz to operate where presumably they afe accurate, in
the region away from the field null. This was done and in Table 1 we show the
FLR growth rate normalized to the MHD value for various values of vc/wo.

v /¥, | 0.0 | 0.8 | 0.7 | o.8 | 0.9 | 1.0

5 | 100 | 0.8 | 0.3 | ©G6.14 | 000 | 0.00

TABLE 1. 5 is the FIR growth rate normalized to the MHD value and y./¥_ is the
ratio of the value of ¥ where the I'LR torms are cutoff to the total terped flux.

3

Table 1 shows that there ig a significant FLR stabilizing effevt from {he flux
surfeces away from the field nuil (say, Vc/v < 0.8).  However we must
question the reliability of the results in Table 1.% There ll;;’l are ways to
smooth out singularities, but to do so is gd hos end physically may not be
unique. Table 1 shows that the normalired growth rate can have any value
between O and 1, depending on just wherc the FL? éornl are cut off. Equation
(2) can be z0lved for w: w = [Fg * (F§ + 188WK,) / ]/aXg. From this equatien
we see that the FLR term I, ?l always ntlbiflsln. (for eigenfunctions ¥ not
too different from the MHD eigenfunction). Since any expression for Fp is
stabilizing, we should have confidence in the results only when rz is obtained
rigorously and in a parameter regime whore the FLR approximation is a good
one. To summarize, if the full FLR terms are kept the result is unphysical,
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FRX-C. In Figs. 1c and 1d are the corresponding plots for 5 mTorr operation
of FRX-C, in which the jon temperature is 600 eV ($=2.4). In the low
temperature case the magnetic moment of the ion is conserved well in the
siraight {field line region of the FRC, and in the high temperature case the
oscillation in the magnetic moment is 115%. In both cases when the ion
reaches the tips of the flux surfaces the magnetic moment experiences large,
random oscillations; this is caused primarily by the fact that the magnetic
field line curvatures are large enough compared to the Larmor radius that the
ions experience a nonadiabatic shift from v, to v,. Also, Fig. 1b shows that
after the ion experiences the nonadiabatic region at the tips of the flux
surfaces its magnetic moment jumps to quite a different value than it started
with. This behavior is particularly unacceptable in the case of the tilting
mode where the eigenfunction is peaked at the tips of the flux surfaces. The
trajectories shown in Figs. 1a and 1c were not specially chosen—we have
inspected many trajectories, even for subthermal particles, and u is always
poorly conserved as in Figs. 1> and 1d. Also not shown are those
trajectories that pass near the field null, where the definition of 4 becomes
meaningless (this is also the region of peak ion number density).

Following a suggestion by R. Spencer, we can ask what is the criticel
value of s, s it such that for 8>8,. .54 M I8 conserved satisfactorily (say,
Au<t25%) for a thermal ion away from the field null? s rit May give a rough
indication of when FLR fluid effects become realizable. Yn }igs. 2a and 2b
we show two elliptical equilibria®, with x_=0.59 and x,=0.87, respectively,
and in 2c and 2d two racetrack equilibria, with x_.=0.60 and x,=0.80,
respectively. The values of S.rjy 8re shown in the Figure. The conclusion is
that FLR fluid effects may not ecome realizable wuntil s e¢vceeds 40 for
equilibria of moderate x  (x,<0.6) and 45-60 for equilibria of large x,
(x'>0.85).

V. CONCLUSIONS

We have shown that an FLR theory of the tilting mode in FRCs is
unreliable due to a bresakdown of the FLR assumptions of small ion Larmor
radius and constant magnetic moment. If the answer ‘o the FRC tilting problem
lies in linear stability theory, then evidently a nonlocal kinetic stability
computation must be done, and we will report on that calculation in a future
publication.

We wish to acknowledge useful discussions with D. C. Barnes, Jin-Soo Kim,
H. R. Lewis, and R. L. Spencer. This work was suppcrted by the
U. S. Department of Energy.
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if the FLR terms are cut off at some value of y the resulting growth rate is
not unique since it reflects that arbitrary cut-off.

This discouraging conclusion arises unavoidably from an FLR theory, and
this is one reason why we feel FLR theories are not appropriate for global
modes in FRCs. In an FLR theory it is assumed that the local Larmor radius of
the particles is small compared to any other scale length of the problem, such
as the scale length of the normal mode. Thus in the orbit integrals, which
cover a spatial region roughly the size of the local ion Larmcr (or betatron)
radius, the perturbation ¢ is puiled outside the integral. However, the
spatia! extent of an ion orbi{ is not a small quantity near the field null of
an FRC. The exact orbit integrals contain curvature factors that are averaged
toth along the field line, as in (4-0), and across various flux surfaces, as
determined by the spatial extent of the iocal ion orbit. It is the latter
averaging that yields a finite result for the exact orbit integral but which
is absent in the FLR approximation.

1V. CONSTANCY OF THE MAGNETIC MOMENT

In this section we present numerical results for the consxtancy of the
magpetic moment for ions in FRC equilibria. A convenient parameter that
nﬁ;:urel the aumber of ion Larmor radii from the field null to the separatrix
is

l" xR
s = ] dr r - 3 ' . (8)
R° rgpy(r) Sy,
where x_ is the ratio of separatrix radius to wall radius (z.-.59 for our
equilibrium). .

We solve the equations of motion numerically for an ion in tke two
dimensional effective potential of an FRC. As the particle trajectory |is
computed we monitor the instantaneous magpnetic moment of the particle, u(t) =
l'i/ZB c’ where B ¢ is measured at the particle's instantaneous guiding center
pocitISn and v, if°measured in the particle's local B x B frame.

In Fig. 1a we show a plot of a thermal ion trajectory superimposed on
the flux surfaces of the equilibrium being considered in this paper. In Fig.
1d is the corresponding plot of u normalized to ite value at tm=0, as a
function of time along the trajectory. These two plots correspond to an ion
temperature of 100 eV (s»6.0), which 4is typical of 20 nTorr operation of

(») ®rtc” AS
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FIGURE 1. Particle trajectories and FIGURE 2. Elliptical and racetrack
corresponding Ragnetic momants vs time. equilibria with critical s values.




